Two inequalities

https://www.linkedin.com/groups/8313943/8313943-6361509260144312323 Let x, y, z, t > 0, prove that

(a)
$$x + y + z + 3/(1/x + 1/y + 1/z) \ge 4(xyz)^{1/3}$$
.

(b)
$$x + y + z + t + 4/(1/x + 1/y + 1/z + 1/t) \ge 5(xyzt)^{1/4}$$
.

Solution by Arkady Alt, San Jose, California, USA.

(a) Since
$$(x+y+z)^2 \ge 3(xy+yz+zx)$$
 we have

(1)
$$3/(1/x+1/y+1/z) = \frac{3xyz}{xy+yz+zx} \ge \frac{9xyz}{(x+y+z)^2}$$
. Thus, suffice to prove inequality

(2)
$$x + y + z + \frac{9xyz}{(x+y+z)^2} \ge 4(xyz)^{1/3}$$
.

Let
$$x + y + z = 1$$
 (due homogeneity of (2)) and let $u := (xyz)^{1/3} \le \frac{x + y + z}{3} = \frac{1}{3}$.

Then inequality (2) becomes $1 + 9u^3 \ge 4u$ and we have

$$1+9u^3-4u=(1-3u)(1-u-3u^2)\geq (1-3u)\left(1-\frac{1}{3}-3\cdot\frac{1}{3^2}\right)=\frac{1-3u}{3}\geq 0.$$

Remark.

Denoting
$$A := \frac{x + y + z}{3}$$
, $H := \left(\frac{x^{-1} + y^{-1} + z^{-1}}{3}\right)^{-1}$ and $G := (xyz)^{1/3}$ we can rewrite inequality (a) as $3A + H \ge 4G$ and inequality (1) as $A^2H \ge G^3$.

(b) Since by Maclaurin's inequality
$$\frac{x+y+z+t}{4} \ge \left(\frac{xyz+xyt+xzt+yzt}{4}\right)^3 \iff (x+y+z+t)^3 \ge 16(xyz+xyt+xzt+yzt)$$
 we have

$$(x+y+z+t)^{3} \ge 16(xyz+xyt+xzt+yzt) \text{ we have}$$
(3) $4/(1/x+1/y+1/z+1/t) = \frac{4xyzt}{xyz+xyt+xzt+yzt} \ge \frac{64xyzt}{(x+y+z+t)^{3}}.$

Thus, suffice to prove inequality (4)
$$x+y+z+t+\frac{64xyzt}{(x+y+z+t)^3} \ge 5(xyzt)^{1/4}$$
.

Let
$$x + y + z + t = 1$$
 (due homogeneity of (2)) and let $u := (xyzt)^{1/4} \le \frac{x + y + z + t}{4} = \frac{1}{4}$.

Then inequality (4) becomes $1 + 64u^4 \ge 5u$ and we have

$$1 + 64u^4 - 5u = (1 - 4u)(1 - u - 4u^2 - 16u^3) \ge (1 - 4u)\left(1 - \frac{1}{4} - 4 \cdot \frac{1}{16} - 16 \cdot \frac{1}{64}\right) = \frac{1 - 4u}{4} \ge 0.$$

Remark.

As above, denoting arithmetic, harmonic and geometric means of x, y, z, t by A, H, G, trespectively we can rewrite inequality (**b**) as $4A + H \ge 5G$ and inequality (**3**) as $A^3H \ge G^4$.

★ Generalization:

Let
$$A := \frac{x_1 + x_2 + \ldots + x_n}{n}$$
, $H := \frac{x_1^{-1} + x_2^{-1} + \ldots + x_n^{-1}}{n}$, $G := (x_1 x_2 \dots x_n)^{1/n}$, $S := \frac{x_1 x_2 \dots x_n}{n} \left(\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n} \right) = G^n H^{-1}$.

We will prove inequality which generalize inequalities (a) and (b) that is inequality

(5)
$$nA + H \ge (n+1)G, n \ge 3.$$

Since by Maclaurin's inequality $A^{n-1} \geq S \iff A^{n-1} \geq G^n H^{-1} \iff H \geq \frac{G^n}{A^{n-1}}$ then suffice to prove inequality

(6)
$$nA + \frac{G^n}{A^{n-1}} \ge (n+1)G$$
.

We have (6) $\iff nA^n + G^n - (n+1)G \ge 0$ and since $nA^n + G^n - (n+1)GA^{n-1} =$

$$nA^{n-1}(A-G)-G(A^{n-1}-G^{n-1})=(A-G)\left(nA^{n-1}-G\sum_{k=1}^{n-1}A^{n-k}G^{k-1}\right)\geq$$

$$(A-G)\left(nA^{n-1}-A\sum_{k=1}^{n-1}A^{n-k}A^{k-1}\right)=(A-G)(nA^{n-1}-(n-1)A^{n-1})=A^{n-1}(A-G)\geq 0$$

inequality (6) is proved.